Saccharomyces cerevisiaedeficient in the early anaphase release of Cdc14 can traverse anaphase I without ribosomal DNA disjunction and successfully complete meiosis

Author:

Yellman Christopher M.ORCID

Abstract

ABSTRACTEukaryotic meiosis is a specialized cell cycle involving two successive nuclear divisions that lead to the formation of haploid gametes. The phosphatase Cdc14 plays an essential role in meiosis as revealed in studies of the yeastSaccharomyces cerevisiae. Cdc14 is stored in the nucleolus, a sub-nuclear domain containing the ribosomal DNA, and its release is regulated by two distinct pathways, one acting in early anaphase I of meiosis and a second at the exit from meiosis II. The early anaphase release is thought to be important for disjunction of the ribosomal DNA, disassembly of the anaphase I spindle, spindle pole re-duplication and the counteraction of CDK, all of which are required for progression into meiosis II. The release of Cdc14 from its nucleolar binding partner Net1 is stimulated by phosphorylation of cyclin-dependent kinase sites in Net1, but the importance of that phospho-regulation in meiosis is not well understood. We inducednet1-6cdkmutant cells to enter meiosis and examined the localization of Cdc14 and various indicators of meiotic progression. Thenet1-6cdkmutations inhibit, but don’t fully prevent Cdc14 release, and they almost completely prevent disjunction of the ribosomal DNA during meiosis I. Failure to disjoin the ribosomal DNA is lethal in mitosis, and we expected the same to be true in meiosis. However, the cells were able to complete meiosis II, yielding the expected four meiotic products as viable spores. Therefore, all ribosomal DNA disjunction required for meiosis can occur in meiosis II. We discuss the implications of these findings for our understanding of meiotic chromosome segregation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3