Abstract
AbstractConstitutively active estrogen receptor-α (ER/ESR1) mutations have been identified in approximately one third of ER+ metastatic breast cancer. Although these mutations are known mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant, but not local recurrences. In concordance with transcriptomic profiling of ESR1 mutant tumors, genome-edited Y537S and D538G cell models have a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally confers enhanced cell-cell contacts while decreased cell-ECM adhesion. Context-dependent migratory phenotypes revealed co-targeting of Wnt and ER as vulnerability. Mutant ESR1 exhibits non-canonical regulation of several metastatic pathways including secondary transactivation and de novo FOXA1-driven chromatin remodeling. Collectively, our data supports evidence for ESR1 mutation-driven metastases and provides insight for future preclinical therapeutic strategies.SignificanceContext and allele-dependent transcriptome and cistrome reprogramming in genome-edited ESR1 mutation cell models elicit diverse metastatic phenotypes, including but not limited to alterations in cell adhesion and migration. The gain-of-function mutations can be pharmacologically targeted, and thus may be key components of novel therapeutic treatment strategies for ER-mutant metastatic breast cancer.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献