Decoding nucleosome positions with ATAC-seq data at single-cell level

Author:

Xu BingxiangORCID,Li Xiaoli,Gao Xiaomeng,Jia Yan,Li Feifei,Zhang Zhihua

Abstract

AbstractAs the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the higher architecture of chromatin in a fundamental way, thereby affecting almost all nuclear biology processes. Thanks to its rather simple protocol, ATAC-seq has been rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and single-cell level. However, to picture the arrangement of nucleosomes per se remains a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq analysis toolkit, named deNOPA, to predict nucleosome positions. Assessments showed that deNOPA not only outperformed state-of-the-art tools, but it is the only tool able to predict nucleosome position precisely with ultrasparse ATAC-seq data. The remarkable performance of deNOPA was fueled by the reads from short fragments, which compose nearly half of sequenced reads and are normally discarded from nucleosome position detection. However, we found that the short fragment reads enrich information on nucleosome positions and that the linker regions were predicted by reads from both short and long fragments using Gaussian smoothing. We applied deNOPA to a single-cell ATAC-seq dataset and deciphered the intrapopulation heterogeneity of the human erythroleukemic cell line (K562). Last, using deNOPA, we showed that the dynamics of nucleosome organization may not directly couple with chromatin accessibility in the cis-regulatory regions when human cells respond to heat shock stimulation. Our deNOPA provides a powerful tool with which to analyze the dynamics of chromatin at nucleosome position level in the single-cell ATAC-seq age.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3