An LR framework incorporating sensitivity analysis to model multiple direct and secondary transfer events on skin surface

Author:

Gill Peter,Bleka Øyvind,Roseth Arne,Fonneløp Ane Elida

Abstract

AbstractBayesian logistic regression is used to model the probability of DNA recovery following direct and secondary transfer and persistence over a 24 hour period between deposition and sample collection. Sub-source level likelihood ratios provided the raw data for activity-level analysis. Probabilities of secondary transfer are typically low, and there are challenges with small data-sets with low numbers of positive observations. However, the persistence of DNA over time can be modelled by a single logistic regression for both direct and secondary transfer, except that the time since deposition must be compensated by an offset value for the latter. This simplifies the analysis. Probabilities are used to inform an activity-level Bayesian Network that takes account of alternative propositions e.g. time of assault and time of social activities. The model is extended in order to take account of multiple contacts between person of interest and ‘ victim’. Variables taken into account include probabilities of direct and secondary transfer, along with background DNA from unknown individuals. The logistic regression analysis is Bayesian -for each analysis, 4000 separate simulations were carried out. Quantile assignments enable calculation of a plausible range of probabilities and sensitivity analysis is used to describe the corresponding variation of LRs that occur when modelled by the Bayesian network. It is noted that there is need for consistent experimental design, and analysis, to facilitate inter-laboratory comparisons. Appropriate recommendations are made. The open-source program written in R-code ALTRaP (Activity Level, Transfer, Recovery and Persistence) enables analysis of complex multiple transfer propositions that are commonplace in cases-work e.g. between those who cohabit. A number of case examples are provided. ALTRaP can be used to replicate the results and can easily be modified to incorporate different sets of data and variables.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3