Allostery in Proteins as Point-to-Point Telecommunication in a Network: Frequency Decomposed Signal-to-Noise Ratio and Channel Capacity Analysis

Author:

Varolgüneş Yasemin BozkurtORCID,Rudzinski Joseph F.ORCID,Demir AlperORCID

Abstract

AbstractAllostery in proteins is a phenomenon in which the binding of a ligand induces alterations in the activity of remote functional sites. This can be conceptually viewed as point-to-point telecommunication in a networked communication medium, where a signal (ligand) arriving at the input (binding site) propagates through the network (interconnected and interacting atoms) to reach the output (remote functional site). The reliable transmission of the signal to distal points occurs despite all the disturbances (noise) affecting the protein. Based on this point of view, we propose a computational frequency-domain framework to characterize the displacements and the fluctuations in a region within the protein, originating from the ligand excitation at the binding site and noise, respectively. We characterize the displacements in the presence of the ligand, and the fluctuations in its absence. In the former case, the effect of the ligand is modeled as an external dynamic oscillatory force excitation, whereas in the latter, the sole source of fluctuations is the noise arising from the interactions with the surrounding medium that is further shaped by the internal protein network dynamics. We introduce the excitation frequency as a key factor in a Signal-to-Noise ratio (SNR) based analysis, where SNR is defined as the ratio of the displacements stemming from only the ligand to the fluctuations due to noise alone. We then employ an information-theoretic (communication) channel capacity analysis that extends the SNR based characterization by providing a route for discovering new allosteric regions. We demonstrate the potential utility of the proposed methods for the representative PDZ3 protein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3