Perturbations in 3D genome organization can promote acquired drug resistance

Author:

Manjón Anna GORCID,Hupkes Daan Peric,Liu Ning Qing,Friskes Anoek,Joosten Stacey,Teunissen Hans,Aarts Marleen,Prekovic StefanORCID,Zwart WilbertORCID,de Wit ElzoORCID,van Steensel BasORCID,Medema René HORCID

Abstract

AbstractAcquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 (RPE) cells can acquire resistance to taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here we have investigated how the ABCB1 gene is derepressed. We show that activation of the ABCB1 gene is associated with reduced DNA methylation, reduced H3K9 trimethylation and increased H3K27 acetylation at the ABCB1 promoter. In addition, we find that the ABCB1 locus has moved away from the nuclear lamina in the taxol-resistant cells. This raises the question which of these alterations were causal to derepression. Directly modifying DNA methylation or H3K27 methylation had neither significant effect on ABCB1 expression, nor did it promote drug resistance. In contrast, the disruption of Lamin B Receptor (LBR), a component of the nuclear lamina involved in genome organization, did promote the acquisition of a taxol-resistant phenotype in a subset of cells. Using CRISPRa-mediated gene activation, we could further substantiate a model in which disruption of lamina association renders the ABCB1 gene permissive to derepression. Based on these data we propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3