Characterizing gene expression responses to biomechanical strain in an in vitro model of osteoarthritis

Author:

Hung AnthonyORCID,Housman GenevieveORCID,Briscoe Emilie A.,Cuevas Claudia,Gilad YoavORCID

Abstract

AbstractOsteoarthritis (OA) is a common chronic degenerative joint disease affecting articular cartilage and underlying bone. Both genetic and environmental factors appear to contribute to the development of this disease. Specifically, pathological levels of biomechanical stress on joints play a notable role in disease initiation and progression. Population-level gene expression studies of cartilage cells experiencing biomechanical stress may uncover gene-by-environment interactions relevant to OA and human joint health. To build a foundation for such studies, we applied differentiation protocols to develop an in vitro system of chondrogenic cell lines (iPSC-chondrocytes). We characterized gene regulatory responses of three human iPSC-chondrocyte lines to cyclic tensile strain treatment. We measured the contribution of biological and technical factors to gene expression variation in this system and, even in this small sample, found several genes that exhibit inter-individual expression differences in response to mechanical strain, including genes previously implicated in OA. Expanding this system to include iPSC-chondrocytes from a larger number of individuals will allow us to characterize and better understand gene-by-environment interactions related to OA and joint health.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3