Protection from lethal Clostridioides difficile infection via intraspecies competition for co-germinant

Author:

Leslie Jhansi L.ORCID,Jenior Matthew L.,Vendrov Kimberly C.ORCID,Standke Alexandra K.,Barron Madeline R.ORCID,O’Brien Tricia J.,Unverdorben Lavinia,Thaprawat Pariyamon,Bergin Ingrid L.,Schloss Patrick D.ORCID,Young Vincent B.ORCID

Abstract

AbstractClostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI) as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile. To date the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is non-toxigenic C. difficile. Using multiple infection models we determined that pre-colonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile is sufficient to decrease germination of the second strain thereby limiting colonization by the lethal strain.ImportanceAntibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile. In this study we found that reduction of the amino acid glycine by pre-colonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which pre-colonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3