Abstract
AbstractTelomeres are intrinsically difficult-to-replicate regions of eukaryotic chromosomes. Telomeric repeat binding factor 2 (TRF2) binds to origin recognition complex (ORC) to facilitate the loading of ORC and the replicative helicase MCM complex onto DNA at telomeres. However, the biological significance of the TRF2-ORC interaction for telomere maintenance remains largely elusive. Here, we employed a separation-of-function TRF2 mutant with mutations in two acidic acid residues (E111A and E112A) that specifically inhibited the TRF2-ORC interaction in human cells without substantially inhibiting TRF2 interactions with its other binding partners. The TRF2 mutant was impaired in ORC recruitment to telomeres and showed increased replication stress-associated telomeric DNA damage and telomere instability. Furthermore, overexpression of an ORC1 fragment (amino acids 244–511), which competitively inhibited the TRF2-ORC interaction, increased telomeric DNA damage under replication stress conditions in human cells. Taken together, these findings suggest that TRF2-mediated ORC recruitment contributes to the suppression of telomere instability.
Publisher
Cold Spring Harbor Laboratory