High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation

Author:

Jones RobertORCID,Maffei Chiara,Augustinack Jean,Fischl Bruce,Wang Hui,Bilgic Berkin,Yendiki Anastasia

Abstract

While many useful microstructural indices, as well as orientation distribution functions, can be obtained from multi-shell dMRI data, there is growing interest in exploring the richer set of microstructural features that can be extracted from the full ensemble average propagator (EAP). The EAP can be readily computed from diffusion spectrum imaging (DSI) data, at the cost of a very lengthy acquisition. Compressed sensing (CS) has been used to make DSI more practical by reducing its acquisition time. CS applied to DSI (CS-DSI) attempts to reconstruct the EAP from significantly undersampled q-space data. We present a post mortem validation study where we evaluate the ability of CS-DSI to approximate not only fully sampled DSI but also multi-shell acquisitions with high fidelity. Human brain samples are imaged with high-resolution DSI at 9.4T and with polarization-sensitive optical coherence tomography (PSOCT). The latter provides direct measurements of axonal orientations at microscopic resolutions, allowing us to evaluate the mesoscopic orientation estimates obtained from diffusion MRI, in terms of their angular error and the presence of spurious peaks. We test two fast, dictionary-based, L2- regularized algorithms for CS-DSI reconstruction. We find that, for a CS acceleration factor of R=3, i.e., an acquisition with 171 gradient directions, one of these methods is able to achieve both low angular error and low number of spurious peaks. With a scan length similar to that of high angular resolution multi-shell acquisition schemes, this CS-DSI approach is able to approximate both fully sampled DSI and multi-shell data with high accuracy. Thus it is suitable for orientation reconstruction and microstructural modeling techniques that require either grid- or shell-based acquisitions. We find that the signal-to-noise ratio (SNR) of the training data used to construct the dictionary can have an impact on the accuracy of CS-DSI, but that there is substantial robustness to loss of SNR in the test data. Finally, we show that, as the CS acceleration factor increases beyond R=3, the accuracy of these reconstruction methods degrade, either in terms of the angular error, or in terms of the number of spurious peaks. Our results provide useful benchmarks for the future development of even more efficient q-space acceleration techniques.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3