ORFhunteR: an accurate approach for the automatic identification and annotation of open reading frames in human mRNA molecules

Author:

Grinev Vasily V.ORCID,Yatskou Mikalai M.,Skakun Victor V.,Chepeleva Maryna K.ORCID,Nazarov Petr V.ORCID

Abstract

AbstractMotivationModern methods of whole transcriptome sequencing accurately recover nucleotide sequences of RNA molecules present in cells and allow for determining their quantitative abundances. The coding potential of such molecules can be estimated using open reading frames (ORF) finding algorithms, implemented in a number of software packages. However, these algorithms show somewhat limited accuracy, are intended for single-molecule analysis and do not allow selecting proper ORFs in the case of long mRNAs containing multiple ORF candidates.ResultsWe developed a computational approach, corresponding machine learning model and a package, dedicated to automatic identification of the ORFs in large sets of human mRNA molecules. It is based on vectorization of nucleotide sequences into features, followed by classification using a random forest. The predictive model was validated on sets of human mRNA molecules from the NCBI RefSeq and Ensembl databases and demonstrated almost 95% accuracy in detecting true ORFs. The developed methods and pre-trained classification model were implemented in a powerful ORFhunteR computational tool that performs an automatic identification of true ORFs among large set of human mRNA molecules.Availability and implementationThe developed open-source R package ORFhunteR is available for the community at GitHub repository (https://github.com/rfctbio-bsu/ORFhunteR), from Bioconductor (https://bioconductor.org/packages/devel/bioc/html/ORFhunteR.html) and as a web application (http://orfhunter.bsu.by).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3