Structural insight into host plasma membrane association and assembly of HIV-1 Matrix protein

Author:

Ciftci Halilibrahim,Tateishi Hiroshi,Koiwai Kotaro,Koga Ryoko,Anraku Kensaku,Monde Kazuaki,Dağ Çağdaş,Destan Ebru,Yuksel Busra,Ayan Esra,Yildirim Gunseli,Yigin Merve,Ertem F. Betul,Shafiei Alaleh,Guven Omur,Besler Sabri O.,Sierra Raymond G.,Yoon Chun Hong,Su Zhen,Liang Mengling,Acar Burcin,Haliloglu Turkan,Otsuka Masami,Yumoto Fumiaki,Fujita Mikako,Senda Toshiya,DeMirci HasanORCID

Abstract

ABSTRACTHIV-1 continues to be a global health concern since AIDS was first recognized by the World Health Organization (WHO). It is estimated that there were 38 million people infected with HIV-1 and 1.5 million deaths in 2019 alone. A better understanding of the details of the HIV late-stage life cycle, involving Pr55Gag attachment to the membrane for the further oligomerization to release virion, will provide us new avenues for potential treatment. Inositol hexakisphosphate (IP6) is an abundant endogenous cyclitol molecule and its binding was linked to the oligomerization of Pr55Gag via the MA domain. However, the binding site of IP6 on MA was unknown and the structural details of this interaction were missing. Here, we present three high-resolution crystal structures of the MA domain in complex with IP6 molecules to reveal its binding mode. Additionally, extensive Differential Scanning Fluorimetry analysis combined with cryo- and ambient-temperature X-ray crystallography and computational biology identify the key residues that participate in IP6 binding. Our data provide novel insights about the multilayered HIV-1 virion assembly process that involves the interplay of IP6 with PIP2, a phosphoinositide essential for the membrane binding of Pr55Gag. IP6 and PIP2 have neighboring alternate binding sites within the same highly basic region (residues 18-33). This indicates that IP6 and PIP2 bindings are not mutually exclusive and may play a key role in coordinating virion particles’ membrane localization. Based on our three different IP6-MA complex crystal structures, we propose a new model that involves the IP6 coordination of the oligomerization of outer MA and inner CA domain 2D layers during assembly and budding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3