Albendazole reduces endoplasmic reticulum stress induced by Echinococcus multilocularis in mice

Author:

Weingartner Michael,Jebbawi FadiORCID,Wang Junhua,Stücheli SimonORCID,Gottstein Bruno,Beldi GuidoORCID,Lundström-Stadelmann Britta,Odermatt AlexORCID

Abstract

AbstractBackgroundEchinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with relatively frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice.MethodsE. multilocularis- and mock-infected C57BL/6 mice were subdivided six weeks after infection into vehicle and albendazole (ABZ) treated groups. Eight weeks later, liver tissue was collected to examine mRNA, microRNA (miR) and protein expression of UPR- and ERS-related genes.ResultsE. multilocularis infection upregulated UPR- and ERS-related proteins, including ATF6, CHOP, GRP78, ERP72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed the increased ATF6 and calreticulin protein expression, tended to reverse increased CHOP, GRP78, ERP72 and H6PD expression, and decreased ATF4 and IRE1α expression to levels seen in mock-infected mice. The expression of miR-146a-5p (downregulated by IRE1α) and miR-1839-5p (exhibiting a unique target site in the IRE1α 3’UTR) were significantly increased in E. multilocularis infected mice, an effect reversed by ABZ treatment. Other miRs analyzed were not altered in E. multilocularis infected mice.Conclusions and SignificanceAE causes UPR activation and ERS in mice. The E. multilocularis-induced ERS was ameliorated by ABZ treatment, indicating its effectiveness to inhibit parasite proliferation and downregulate its activity status. ABZ itself did not affect UPR in control mice. Identified miR-146a-5p and miR-1839-5p might represent biomarkers of E. multilocularis infection. Modulation of UPR and ERS, in addition to ABZ administration, could be exploited to treat E. multilocularis infection.Author summaryAlveolar echinococcosis is a zoonotic disease caused by the fox tapeworm Echinococcus multilocularis. Treatment of this fatal disease is limited to surgical intervention, preferably radical curative surgery if possible, and the use of parasitostatic benzimidazoles. It is not yet fully understood how the parasite can remain in the host’s tissue for prolonged periods, complicating the development of therapeutic applications. This work investigated an involvement of the unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection and upon treatment with albendazole (ABZ) in mice. The results revealed increased expression levels of the ERS sensor ATF6 and of downstream target genes in liver tissue of E. multilocularis- compared to mock-infected mice. Additionally, H6PD, generating NADPH within the endoplasmic reticulum, and the lectin-chaperone calreticulin were increased in E. multilocularis infected liver tissue while the expression of the ERS associated genes ATF4 and IRE1α were decreased. The miR-1839-5p and miR-146-p, linked to IRE1α, were elevated upon E. multilocularis infection, offering potential as novel biomarkers of alveolar echinococcosis. The observed gene expression changes were at least partially reversed by ABZ treatment. Whether modulation of UPR and ERS targets can improve the therapy of alveolar echinococcosis remains to be investigated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3