Chemical ecology of an apex predator life cycle

Author:

Mucci Nicholas C.,Jones Katarina A.,Cao Mengyi,Wyatt Michael R.,Foye Shane,Kauffman Sarah,Taufer Michela,Chikaraishi Yoshito,Steffan Shawn,Campagna Shawn,Goodrich-Blair Heidi

Abstract

AbstractMicrobial symbiotic interactions, mediated by small molecule signaling, drive physiological processes of higher order systems. Metabolic analytic technologies advancements provide new avenues to examine how chemical ecology, or conversion of existing biomass to new forms, changes over a symbiotic lifecycle. We examine such processes using the tripartite relationship between nematode host Steinernema carpocapsae, its obligate mutualist bacterium, Xenorhabdus nematophila, and the insects they infect together. We integrate trophic, metabolomics, and gene regulation analyses to understand insect biomass conversion to nematode or bacterium biomass. Trophic analysis established bacteria as the primary insect consumers, with nematodes at trophic position 4.37, indicating consumption of bacteria and likely other nematodes. Significant, discrete metabolic phases were distinguishable from each other, indicating the insect chemical environment changes reproducibly during bioconversion. Tricarboxylic acid cycle components and amino acids were significantly affected throughout infection. These findings contribute to an ongoing understanding of how symbiont associations shape chemical environments.TeaserEntomopathogenic nematodes act as an apex predator in some ecosystems through altering chemical environments of their prey.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

1. L. Margulis , Symbiosis in cell evolution: life and its environment on the early Earth. (W. H. Freeman, San Francisco, 1981), pp. xxii, 419 p.

2. Bacterial Small-Molecule Signaling Pathways

3. Small molecule control of bacterial biofilms

4. Making the Most of “Omics” for Symbiosis Research

5. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nematodes as Models for Symbiosis;Nematodes as Model Organisms;2022-05-16

2. Nematodes as Models for Symbiosis;Nematodes as Model Organisms;2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3