3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo

Author:

Sanematsu Paula C.ORCID,Erdemci-Tandogan GoncaORCID,Patel Himani,Retzlaff Emma M.,Amack Jeffrey D.ORCID,Lisa Manning M.ORCID

Abstract

AbstractThe left-right organizer in zebrafish embryos, Kupffer’s Vesicle (KV), is a simple organ that undergoes programmed asymmetric cell shape changes that are necessary to establish the left-right axis of the embryo. We use simulations and experiments to investigate whether 3D mechanical drag forces generated by the posteriorly-directed motion of the KV through the tailbud tissue are sufficient to drive such shape changes. We develop a fully 3D vertex-like (Voronoi) model for the tissue architecture, and demonstrate that the tissue can generate drag forces and drive cell shape changes. Furthermore, we find that tailbud tissue presents a shear-thinning, viscoelastic behavior consistent with those observed in published experiments. We then perform live imaging experiments and particle image velocimetry analysis to quantify the precise tissue velocity gradients around KV as a function of developmental time. We observe robust velocity gradients around the KV, indicating that mechanical drag forces must be exerted on the KV by the tailbud tissue. We demonstrate that experimentally observed velocity fields are consistent with the viscoelastic response seen in simulations. This work also suggests that 3D viscoelastic drag forces could be a generic mechanism for cell shape change in other biological processes.Highlightsnew physics-based simulation method allows study of dynamic tissue structures in 3Dmovement of an organ through tissue generates viscoelastic drag forces on the organthese drag forces can generate precisely the cell shape changes seen in experimentPIV analysis of experimental data matches simulations and probes tissue mechanicsGraphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3