Fundamental Role Of The H2A.Z C-Terminal Tail In The Formation Of Constitutive Heterochromatin

Author:

Imre László,Nánási Péter,Bosire Rosevalentine,Csóti Ágota,Nóra Enyedi Kata,Mező Gábor,Kusakabe Masayuki,Ausio Juan,Harata Masahiko,Szabó Gábor

Abstract

ABSTRACTNucleosome stability, a crucial determinant of gene regulation, was measured in a robust in situ assay to assess the molecular determinants of the stability of H2A.Z-containig nucleosomes. Surprisingly, a large fraction of H2A.Z detected by three different antibodies was released from the nucleosomes by salt together with H3, and was associated with H3K9me3 but not with H3K27me3 marked nucleosomes. This unusual behavior relied on the presence of the unstructured C-terminal chain of the histone variant, rather than on isoform specificity, posttranslational modifications or binding of the reader protein PWWPA2, as determined using cell lines expressing only particular forms of the variant. In the absence of this tail, or upon addition of an excess of the tail peptide to the nuclei of control cells, the canonical H2A-like stability features were readily restored and most of the H2A.Z-containing nucleosomes left the periphery and ended up in scattered foci in the nuclei. Concomitantly, the H3K9me3-marked constitutive heterochromatin was also dispersed, what was accompanied by increased overall nuclease sensitivity and significantly enhanced binding of intercalating dyes to the DNA. The DT40 cells expressing the tailless H2A.Z showed marked differences in their gene expression pattern and were distinguished by compromised DNA damage response. Thus, interactions involving a short H2A.Z peptide chain simultaneously determine the stability and accessibility features of chromatin involving the nucleosomes containing this histone variant and the localization of these large chromatin regions in the nucleus. Our data suggest that H2A.Z can function in both heterochromatic and in euchromatic scenarios depending on the molecular interactions involving its C-terminal unstructured tail, shedding light on the enigmatic double-faced character of this histone variant.

Publisher

Cold Spring Harbor Laboratory

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3