Abstract
SUMMARYMetabolic adaptation to changing demands underlies homeostasis. During inflammation or metastasis, cells leading migration into challenging environments require an energy boost, however what controls this capacity is unknown. We identify a previously unstudied nuclear protein, Atossa, as changing metabolism in Drosophila melanogaster immune cells to promote tissue invasion. Atossa’s vertebrate orthologs, FAM214A-B, can fully substitute for Atossa, indicating functional conservation from flies to mammals. Atossa increases mRNA levels of Porthos, an unstudied RNA helicase and two metabolic enzymes, LKR/SDH and GR/HPR. Porthos increases translation of a gene subset, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Respiration measurements and metabolomics indicate that Atossa and Porthos powers up mitochondrial oxidative phosphorylation to produce sufficient energy for leading macrophages to forge a path into tissues. As increasing oxidative phosphorylation enables many crucial physiological responses, this unique genetic program may modulate a wide range of cellular behaviors beyond migration.
Publisher
Cold Spring Harbor Laboratory
Reference112 articles.
1. Differential expression analysis for sequence count data
2. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments;Cell Metab,2017
3. CRISPR/Cas9 mediated genome engineering in Drosophila
4. MEME SUITE: tools for motif discovery and searching
5. mTOR and differential activation of mitochondria orchestrate neutrophil chemotaxis;J. Cell Biol,2015
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献