Synchronizability predicts effective responsive neurostimulation for epilepsy prior to treatment

Author:

Scheid Brittany H.ORCID,Bernabei John M.ORCID,Khambhati Ankit N.ORCID,Jeschke Jay,Bassett Danielle S.ORCID,Becker Danielle,Davis Kathryn A.ORCID,Lucas Tim,Doyle WernerORCID,Chang Edward F.,Friedman DanielORCID,Rao Vikram R.ORCID,Litt BrianORCID

Abstract

AbstractDespite the success of responsive neurostimulation (RNS) for epilepsy, clinical outcomes vary significantly and are hard to predict. The ability to forecast clinical response to RNS therapy before device implantation would improve patient selection for RNS surgery and could prevent a costly and ineffective intervention. Determining and validating biomarkers predictive of RNS response is difficult, however, due to the heterogeneity of the RNS patient population and clinical procedures; large, multi-center datasets are needed to quantify patient variability and to account for stereotypy in the treatment paradigm of any one center. Here we use a distributed, cloud-based pipeline to analyze a federated dataset of intracranial EEG recordings, collected prior to RNS surgery, from a retrospective cohort of 30 patients across three major epilepsy centers. Based on recent work modelling the controllability of distributed brain networks, we hypothesize that broader brain network connectivity, beyond the seizure onset zone, can predict RNS response. We demonstrate how intracranial EEG recordings can be leveraged through network analysis to uncover biomarkers that predict response to RNS therapy. Our findings suggest that peri-ictal changes in synchronizability, a global network metric shown to accurately predict outcome from resective epilepsy surgery, can distinguish between good and poor RNS responders under the current RNS therapy guidelines (area under the receiver operating characteristic curve of 0.75). Furthermore, this study also provides a proof-of-concept roadmap for multicenter collaboration where practical considerations impede sharing datasets fully across centers.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3