Abstract
AbstractSelf-propelled bacteria can exhibit a large variety of non-equilibrium self-organized phenomena. Swarming is one such fascinating dynamical scenario where a number of motile individuals grouped into clusters and move in synchronized flows and vortices. While precedent investigations in rod-like particles confirm that increased aspect-ratio promotes alignment and order, recent experimental studies in bacteria Bacillus subtilis show a non-monotonic dependence of cell-aspect ratio on their swarming motion. Here, by computer simulations of an agent-based model of selfpropelled, mechanically interacting, rod-shaped bacteria in overdamped condition, we explore the collective dynamics of bacterial swarm subjected to a variation of cell-aspect ratio. When modeled with an identical self-propulsion speed across a diverse range of cell aspect ratio, simulations demonstrate that both shorter and longer bacteria exhibit slow dynamics whereas the fastest speed is obtained at an intermediate aspect ratio. Our investigation highlights that the origin of this observed non-monotonic trend of bacterial speed and vorticity with cell-aspect ratio is rooted in the cell-size dependence of motility force. The swarming features remain robust for a wide range of surface density of the cells, whereas asymmetry in friction attributes a distinct effect. Our analysis identifies that at an intermediate aspect ratio, an optimum cell size and motility force promote alignment, which reinforces the mechanical interactions among neighboring cells leading to the overall fastest motion. Mechanistic underpinning of the collective motions reveals that it is a joint venture of the short-range repulsive and the size-dependent motility forces, which determines the characteristics of swarming.
Publisher
Cold Spring Harbor Laboratory