Aryl Hydrocarbon Receptor Blocks Aging-Induced Senescence in the Liver and Fibroblast Cells

Author:

Nacarino-Palma Ana,Rico-Leo Eva M.,Campisi Judith,Ramanathan Arvind,Merino Jaime M.,Fernández-Salguero Pedro M.

Abstract

ABSTRACTAging induces progressive organ degeneration and worsening of tissue homeostasis leading to multiple pathologies. Yet, little is known about the mechanisms and molecular intermediates involved. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated senescence and larger numbers of liver progenitor cells. Senescence-associated markers β-galactosidase (SA-β-Gal), p16Ink4aand p21Cip1and genes of the senescence-associated secretory phenotype (SASP) TNF and IL1 were overexpressed in agedAhR-/-livers. AhR binding to the promoter of those genes, as shown by chromatin immunoprecipitation, likely had a repressive effect maintaining their physiological levels inAhR+/+livers. Furthermore, factors secreted by senescent cells MCP-2, MMP12 and FGF were also produced at higher levels in aged AhR-null livers. Supporting the linkage between senescence and stemness, liver progenitor cells were more abundant inAhR-/-mice, which could probably contribute to their increased hepatocarcinoma burden. These roles of AhR are not liver-specific since adult and embryonic AhR-null fibroblasts acquired cellular senescence upon culturing with overexpression of SA-β-Gal, p16Ink4aand p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored basal expression of senescent markers inAhR-/-fibroblasts. Oppositely, senescence promoter palbociclib induced an AhR-null like phenotype inAhR+/+fibroblasts. Moreover, doxycycline-induced senescence reduced AhR levels while depletion of p16Ink4a-expressing senescent cells restored basal AhR levels in mouse lungs. Thus, AhR is needed to restrict age-induced senescence, and such activity seems to correlate with a more differentiated phenotype and with increased resistance to liver tumorigenesis.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3