DeTOKI identifies and characterizes the dynamics of chromatin topologically associating domains in a single cell

Author:

Li Xiao,Zhang Zhihua

Abstract

AbstractThe human genome has a dynamic, well-organized hierarchical 3D architecture, including megabase-sized topologically associating domains (TAD). TADs are a key structure of the genome regulating nuclear processes, such as gene expression, DNA replication and damage repair. However, owing to a lack of proper computational tools, TADs have still not been systematically and reliably surveyed in single cells. In the present work, we developed a new algorithm to decode TAD boundaries that keep chromatin interaction insulated (deTOKI) from ultra-sparse Hi-C data. By nonnegative matrix factorization, this novel algorithm seeks out for regions that insulate the genome into blocks with minimal chance of clustering. We found that deTOKI outperformed competing tools and that it reliably identified TADs with single-cell Hi-C (scHi-C) data. By applying deTOKI, we found that domain structures are prevalent in single cells. Further, although domain structures are highly dynamic between cells, TADs adhere to the ensemble, suggesting tight regulation of single-cell TADs. Finally, we found that the insulation properties of TAD boundaries have major effect on the epigenetic landscape in individual cells. In sum, deTOKI serves as a powerful tool for profiling TADs in single cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3