Acyl chain shortening induced by inhibition of acetyl-CoA carboxylase renders phosphatidylcholine redundant

Author:

Bao Xue,Koorengevel Martijn C.,Koerkamp Marian J.A. GrootORCID,Homavar Amir,Weijn Amrah,Crielaard Stefan,Renne Mike F.ORCID,Geerts Willie J.C.ORCID,Surma Michal A.ORCID,Mari MurielORCID,Holstege Frank C.P.ORCID,Klose ChristianORCID,Kroon Anton I.P.M. deORCID

Abstract

ABSTRACTPhosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes including yeast. PC has been assigned a multitude of functions in addition to that of building block of the lipid bilayer. Here we show that PC is evolvable essential in yeast by isolating suppressor mutants devoid of PC that exhibit robust growth. The requirement for PC is suppressed by monosomy of chromosome XV, or by a point mutation in theACC1gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis differently, both decrease Acc1 activity thereby reducing the average acyl chain length. Accordingly, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, up-regulation of lipid synthesis is instrumental to accomplish feed-back inhibition of Acc1 by acyl-CoA produced by the fatty acid synthase (FAS). The results show that yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS, and indicate that PC evolved by benefitting the maintenance of membrane fluidity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3