Supervised Semantic Similarity

Author:

Sousa Rita T.ORCID,Silva SaraORCID,Pesquita CatiaORCID

Abstract

AbstractBackgroundSemantic similarity between concepts in knowledge graphs is essential for several bioinformatics applications, including the prediction of protein-protein interactions and the discovery of associations between diseases and genes. Although knowledge graphs describe entities in terms of several perspectives (or semantic aspects), state-of-the-art semantic similarity measures are general-purpose. This can represent a challenge since different use cases for the application of semantic similarity may need different similarity perspectives and ultimately depend on expert knowledge for manual fine-tuning.ResultsWe present a new approach that uses supervised machine learning to tailor aspect-oriented semantic similarity measures to fit a particular view on biological similarity or relatedness. We implement and evaluate it using different combinations of representative semantic similarity measures and machine learning methods with four biological similarity views: protein-protein interaction, protein function similarity, protein sequence similarity and phenotype-based gene similarity.ConclusionsThe results demonstrate that our approach outperforms non-supervised methods, producing semantic similarity models that fit different biological perspectives significantly better than the commonly used manual combinations of semantic aspects.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Self-Supervised Strategies for Standard Genetic Programming;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

2. Example Applications Beyond Node Classification;Synthesis Lectures on Data, Semantics, and Knowledge;2023

3. pyRDF2Vec: A Python Implementation and Extension of RDF2Vec;The Semantic Web;2023

4. Unsupervised Event Graph Representation and Similarity Learning on Biomedical Literature;Sensors;2021-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3