Ultrafast Simulation of Large-Scale Neocortical Microcircuitry with Biophysically Realistic Neurons

Author:

Oláh Viktor JánosORCID,Pedersen Nigel PORCID,Rowan Matthew JMORCID

Abstract

AbstractUnderstanding the activity of the mammalian brain requires an integrative knowledge of circuits at distinct scales, ranging from ion channel gating to circuit connectomics. To understand how multiple parameters contribute synergistically to circuit behavior, neuronal computational models are regularly employed. However, traditional models containing anatomically and biophysically realistic neurons are computationally demanding even when scaled to model local circuits. To overcome this limitation, we trained several artificial neural net (ANN) architectures to model the activity of realistic, multicompartmental neurons. We identified a single ANN that accurately predicted both subthreshold and action potential firing and correctly generalized its responses to previously unobserved synaptic input. When scaled, processing times were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-space mapping in a circuit model of Rett syndrome. Thus, we present a novel ANN approach that allows for rapid, detailed network experiments using inexpensive, readily available computational resources.

Publisher

Cold Spring Harbor Laboratory

Reference156 articles.

1. Dayan, P. & Abbott, L. F. Theoretical neuroscience: computational and mathematical modeling of neural systems. (Computational Neuroscience Series, 2001).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3