Author:
Dorosti Sarshar,Khosrowabadi Reza
Abstract
AbstractWe are surrounded with many fractal and self-similar patterns which has been area of many researches in the recent years. We can perceive self-similarities in various spatial and temporal scales; however, the underlying neural mechanism needs to be well understood. In this study, we hypothesized that complexity of visual stimuli directly influence complexity of information processing in the brain. Therefore, changes in fractal pattern of EEG signal must follow change in fractal dimension of animation. To investigate this hypothesis, we recorded EEG signal of fifteen healthy participants while they were exposed to several 2D fractal animations. Fractal dimension of each frame of the animation was estimated by box counting method. Subsequently, fractal dimensions of 32 EEG channels were estimated in a frequency specific manner. Then, association between pattern of fractal dimensions of the animations and pattern of fractal dimensions of EEG signals were calculated using the Pearson’s correlation algorithm. The results indicated that fractal animation complexity is mainly sensed by changes in fractal dimension of EEG signals at the centro-parietal and parietal regions. It may indicate that when the complexity of visual stimuli increases the mechanism of information processing in the brain also enhances its complexity to better attend and comprehend the stimuli.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献