Spontaneous Facet Joint Osteoarthritis in NFAT1-Mutant Mice

Author:

Wang JinxiORCID,Lu Qinghua,Mackay Matthew J.,Liu XiangliangORCID,Feng Yi,Burton Douglas C.,Asher Marc A.

Abstract

ABSTRACTObjectivesAlthough rodent models of traumatically or chemically induced intervertebral facet joint osteoarthritis (FJOA) were previously described, the characteristics of spontaneous FJOA animal models have not been documented. This study aimed to identify the characteristics of a murine model of spontaneous FJOA and its underlying mechanisms.MethodsThe lumbar facet joints of mutant mice carrying a disrupted NFAT1 (nuclear factor of activated T cells 1) allele and of wild-type control mice were examined by histochemistry, quantitative gene expression analysis, immunohistochemistry, and histomorphometry using a novel FJOA scoring system at 2, 6, 12, and 18 months of age. The reproducibility of the FJOA scoring system was analyzed by inter-observer and intra-observer variability tests. Tissue-specific histomorphometric and gene expression changes were statistically analyzed.ResultsNFAT1-mutant facet joints displayed dysfunction of articular chondrocytes and synovial cells with aberrant gene and protein expression in cartilage and synovium as early as 2 months, followed by osteoarthritic structural changes such as articular surface fissuring and chondro-osteophyte formation at 6 months. Deeper cartilage lesions, synovitis, separation of cartilage from thickened subchondral bone, and tissue-specific molecular and cellular alterations in NFAT1-mutant facet joints became evident at 12 and 18 months. Osteoarthritic structural changes were not detected in wild-type facet joints at any ages, though age-related cartilage degeneration was observed at 18 months.ConclusionsUsing NFAT1-mutant mice, this study has identified for the first time an animal model of spontaneous FJOA with age-dependent osteoarthritic characteristics, developed the first FJOA scoring system, and elucidated the molecular mechanisms of NFAT1 mutation-mediated FJOA.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Ross, M. H. & Pawlina, W. in Histology: A Text and Atlas (eds M.H. Ross & W. Pawlina ) 198–217 (Lippincott Williams & Wilkins, 2011).

2. Zhang, X. , Blalock, D. & Wang, J. in Osteoarthritis: Progress in Basic Research and Treatment (ed Q. Chen ) 3–14 (InTech, 2015).

3. Joint Instability and Osteoarthritis

4. Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study

5. Schuenke, M. , Schulte, E. , Schumacher, U. in Atlas of Anatomy (ed L.M. Ross , E.D. Lamperti ) 100–101 (Thieme, 2005).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3