NanoTox: Development of a parsimonious in silico model for toxicity assessment of metal-oxide nanoparticles using physicochemical features

Author:

AnanthaSubramanian Nilesh,Palaniappan AshokORCID

Abstract

AbstractMetal-oxide nanoparticles find widespread applications in mundane life today, and cost-effective evaluation of their cytotoxicity and ecotoxicity is essential for sustainable progress. Machine learning models use existing experimental data, and learn the relationship of various features to nanoparticle cytotoxicity to generate predictive models. In this work, we adopted a principled approach to this problem by formulating a feature space based on intrinsic and extrinsic physico-chemical properties, but exclusive of any in vitro characteristics such as cell line, cell type, and assay method. A minimal set of features was developed by applying variance inflation analysis to the correlation structure of the feature space. Using a balanced dataset, a mapping was then obtained from the normalized feature space to the toxicity class using various hyperparameter-tuned machine learning models. Evaluation on an unseen test set yielded > 96% balanced accuracy for both the random forest model, and neural network with one hidden layer model. The obtained cytotoxicity models are parsimonious, with intelligible inputs, and include an applicability check. Interpretability investigations of the models yielded the key predictor variables of metal-oxide nanoparticle cytotoxicity. Our models could be applied on new, untested oxides, using a majority-voting ensemble classifier, NanoTox, that incorporates the neural network, random forest, support vector machine, and logistic regression models. NanoTox is the very first predictive nanotoxicology pipeline made freely available under the GNU General Public License (https://github.com/NanoTox).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3