Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders

Author:

Whiteway Matthew RORCID,Biderman DanORCID,Friedman Yoni,Dipoppa MarioORCID,Buchanan E KellyORCID,Wu Anqi,Zhou John,Bonacchi NiccolòORCID,Miska Nathaniel J,Noel Jean-PaulORCID,Rodriguez Erica,Schartner MichaelORCID,Socha KarolinaORCID,Urai Anne EORCID,Salzman C DanielORCID,Cunningham John P,Paninski Liam,

Abstract

AbstractRecent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.

Publisher

Cold Spring Harbor Laboratory

Reference106 articles.

1. Toward a science of computational ethology;Neuron,2014

2. Big behavioral data: psychology, ethology and the foundations of neuroscience;Nature neuroscience,2014

3. Neuroscience needs behavior: correcting a reductionist bias;Neuron,2017

4. Measuring behavior across scales;BMC biology,2018

5. Computational neuroethology: a call to action;Neuron,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3