Tax induces the recruitment of NF-kB to unintegrated HIV-1 DNA to rescue viral gene expression and replication

Author:

Irwan Ishak D.,Cullen Bryan R.

Abstract

AbstractWe have previously reported that the normally essential step of integration of the HIV-1 proviral DNA intermediate into the host cell genome becomes dispensable in T cells that express the Human T cell leukemia virus 1 (HTLV-1) Tax protein. The rescue of integrase (IN) deficient HIV-1 replication by Tax results from the strong activation of transcription from the long terminal repeat (LTR) promoter on episomal HIV-1 DNA, an effect that is closely correlated with the recruitment of activating epigenetic marks, such as H3Ac, and depletion of repressive epigenetic marks, such as H3K9me3, from chromatinized unintegrated proviruses. In addition, activation of transcription from unintegrated HIV-1 DNA coincides with the recruitment of NF-kB to the two NF-kB binding sites found in the HIV-1 LTR enhancer. Here we report that the recruitment of NF-kB to unintegrated viral DNA precedes, and is a prerequisite for, Tax-induced changes in epigenetic marks, so that an IN-HIV-1 mutant lacking both LTR NF-kB sites is entirely non-responsive to Tax and fails to undergo the epigenetic changes listed above. We also report that heterologous promoters introduced into IN-HIV-1-based vectors are transcriptionally active even in the absence of Tax. Finally, we failed to reproduce a recent report arguing that heterologous promoters introduced into IN-vectors based on HIV-1 are more active if the HIV-1 promoter and enhancer, located in the LTR U3 region, are deleted, in a so-called self inactivating or SIN lentivector design.ImportanceIntegrase-deficient expression vectors based on HIV-1 are becoming increasingly popular as tools for gene therapy in vivo due to their inability to cause insertional mutagenesis. However, many IN-lentiviral vectors are able to achieve only low levels of gene expression and methods to increase this low level have not been extensively explored. Here we analyze how the HTLV-1 Tax protein is able to rescue the replication of IN-HIV-1 in T cells and describe IN-lentiviral vectors that are able to express a heterologous gene effectively.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3