Attentional Modulations of Alpha Power Are Sensitive to the Task-relevance of Auditory Spatial Information

Author:

Klatt Laura-IsabelleORCID,Getzmann StephanORCID,Schneider DanielORCID

Abstract

AbstractThe topographical distribution of oscillatory power in the alpha band is known to vary depending on the current focus of spatial attention. Here, we investigated to what extend univariate and multivariate measures of post-stimulus alpha power are sensitive to the required spatial specificity of a task. To this end, we varied the perceptual load and the spatial demand in an auditory search paradigm. A centrally presented sound at the beginning of each trial indicated the to-be-localized target sound. This spatially unspecific pre-cue was followed by a sound array, containing either two (low perceptual load) or four (high perceptual load) simultaneously presented lateralized sound stimuli. In separate task blocks, participants were instructed either to report whether the target was located on the left or the right side of the sound array (low spatial demand) or to indicate the exact target location (high spatial demand). Univariate alpha lateralization magnitude was neither affected by perceptual load nor by spatial demand. However, an analysis of onset latencies revealed that alpha lateralization emerged earlier in low (vs. high) perceptual load trials as well as in low (vs. high) spatial demand trials. Finally, we trained a classifier to decode the specific target location based on the multivariate alpha power scalp topography. A comparison of decoding accuracy in the low and high spatial demand conditions suggests that the amount of spatial information present in the scalp distribution of alpha-band power increases as the task demands a higher degree of spatial specificity. Altogether, the results offer new insights into how the dynamic adaption of alpha-band oscillations in response to changing task demands is associated with post-stimulus attentional processing.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3