JNK activation in TA and EDL muscle is load-dependent in rats receiving identical excitation patterns

Author:

Eftestøl EinarORCID,Franchi Martino V.ORCID,Kasper StephanieORCID,Flück MartinORCID

Abstract

ABSTACTAimAs the excitation-contraction coupling is inseparable during voluntary exercise, the relative contribution of the mechanical and neural input is poorly understood. Herein, we use a rat in-vivo strength training setup with an electrically induced standardized excitation pattern previously shown to lead to a load-dependent increase in myonuclear number and hypertrophy, to study acute effects of load per se on molecular signalling.MethodsAnaesthetized rats were subjected to unliteral identical electrically-paced contractions of the TA and EDL muscles under a high or low load for a duration of 2, 10 or 28-minutes. Muscle soluble proteins were extracted, and abundance and specific phosphorylations of FAK, mTOR, p70S6K and JNK were measured. Effects of exercise, load, muscle and exercise duration were assessed.ResultsSpecific phosphorylation of S2448-mTOR, T421/S424-p70S6K and T183/Y185-JNK was increased after 28-minutes of exercise under the high- and low-load protocol. Elevated phosphorylation of mTOR and JNK was detectable already after 2 and 10 minutes of exercise, respectively, but greatest after 28-minutes of exercise. T183/Y185-JNK and S2448-mTOR demonstrated a load-dependent increase in phosphorylation in the exercised muscles that for mTOR depended on muscle type. The abundance of all four kinases was higher in TA compared to EDL muscle. FAK and JNK abundance was reduced after 28 minutes of exercise in both the exercised and control muscle.ConclusionThe current study shows that JNK and mTOR activation is load-driven, and together with muscle-type specific mTOR and p70S6K effects it may drive muscle-type specific exercise and load-responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3