LRH-1 NUTRIGENOMICS: The Provision of Lauric Acid Results in the Endogenous Production of the Liver Receptor Homolog-1 Ligand, Dilauroylphosphatidylcholine, and LRH-1 Transactivation

Author:

Klatt KCORCID,Zhang S.,Malysheva OV,Sun Z.,Dong B.,Brenna JT.,Moore DD.,Roberson MS.,Caudill MA

Abstract

ABSTRACTBackgroundThe unusual phosphatidylcholine species, dilauroylphosphatidylcholine (DLPC), has been reported to bind and activate the orphan nuclear receptor, liver receptor homolog-1 (LRH-1). To date, DLPC has not been reported endogenously in metabolomic databases.ObjectiveHerein, we test the hypothesis that the provision of the acyl constituent of DLPC, lauric acid (C12:0), a saturated fatty acid rich in tropical oils such as coconut oil, will 1) result in endogenous DLPC production and 2) enhance LRH-1 transcriptional activity.MethodsWe measured DLPC following provision of C12:0 to HepG2 cells, C57/BL6J mice, and to healthy human participants in an acute, randomized, controlled cross-over trial. LRH-1fl/fl and LRH-1fl/fl Albumin-Cre mice were used in ex vivo and in vivo approaches. to assess the impact of C12:0 on LRH-1 target gene expression. 1-13C-lauric acid and methyl-d9-choline were used to assess DLPC production dynamics.ResultsDLPC was not observed in any C12:0-free approach. Provision of C12:0 in the culture media or to C57/BL6J mice resulted in the rapid production of DLPC, including DLPC’s presence in multiple LRH-1 expressing tissues. Coconut oil-fed human participants exhibited DLPC in postprandial serum samples. Ex vivo and in vivo C12:0 provision resulted in increased mRNA expression of LRH-1 target genes, an effect that was not observed in hepatic knockout mice. Methyl-d9-choline administration revealed a complex reliance on CDP-choline-derived DLPC.ConclusionC12:0 provision results in endogenous production of the LRH-1 ligand, DLPC, and LRH-1 transcriptional activation phenotypes. Our findings highlight pleiotropic effects of lauric acid, a common hypercholesterolemic dietary saturated fatty acid, secondary to LRH-1 agonism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3