Abstract
AbstractAlthough electrostatics have long been recognized to play an important role in hydrogen exchange (HX) with solvent, the quantitative assessment of its magnitude in the unfolded state has hitherto been lacking. This limits the utility of HX as a quantitative method to study protein stability, folding and dynamics. Using the intrinsically disordered human protein α-synuclein as a proxy for the unfolded state, we show that a hybrid mean-field approach can effectively compute the electrostatic potential at all backbone amide positions along the chain. From the electrochemical potential a fourfold reduction in hydroxide concentration near the protein backbone is predicted for the C-terminal domain, a prognosis that is in direct agreement with experimentally-derived protection factors from NMR spectroscopy. Thus, impeded HX for the C-terminal region of α-synuclein is not the result of intramolecular hydrogen bonding and/or structure formation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献