Abstract
AbstractSoleus and tibialis anterior are two well-characterized skeletal muscles commonly utilized in skeletal muscle-related studies. Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify the gene expression patterns between soleus and tibialis anterior and analyze those genes’ functions based on past literature. This study acquired the gene expression profiles from soleus and tibialis anterior murine skeletal muscle biopsies via RNA-sequencing. Read counts were processed through edgeR’s differential gene expression analysis. Differentially expressed genes were filtered down using a false discovery rate less than 0.05c, a fold-change value larger than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus encoded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathways’ regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for muscle specialization and may help to explain skeletal muscle susceptibility to disease and drugs and refine tissue engineering approaches.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献