Ventilation rate assessment by carbon dioxide levels in dental treatment rooms

Author:

Huang Qirong,Marzouk Tamer,Cirligeanu Razvan,Malmstrom Hans,Eliav Eli,Ren Yan-FangORCID

Abstract

AbstractObjectivesThe purpose of the present study was to monitor and evaluate CO2 levels in dental operatories using a consumer-grade CO2 sensor and determine the utility and accuracy of various methods using CO2 levels to assess ventilation rate in dental clinics. We aim to find a practical tool for dental practitioners to conveniently and accurately monitor CO2 levels and assess the ventilation rates in their office in order to devise a pragmatic and effective strategy for ventilation improvement in their work environment.MethodsMechanical ventilation rate in air change per hour (ACHVENT) of 10 dental operatories was first measured with an air velocity sensor and air flow balancing hood. CO2 levels were measured in these rooms to analyze the effects of ventilation rate and number of persons in the room on CO2 accumulation. Ventilation rates were estimated using natural steady state CO2 levels during dental treatments and experimental CO2 concentration decays by dry ice or mixing baking soda and vinegar. We compared the differences and assessed the correlations between ACHVENT and ventilation rates estimated by steady states CO2 model with low (0.3 L/min, ACHSS30) or high (0.46 L/min, ACHSS46) CO2 generation rates, by CO2 decay constants using dry ice (ACHDI) or baking soda (ACHBV), and by time needed to remove 63% of excess CO2 generated by dry ice (ACHDI63%) or baking soda (ACHBV63%).ResultsACHVENT varied from 3.9 to 35.0 with a mean of 13.2 (±10.6) in the 10 dental operatories. CO2 accumulation occurred in rooms with low ventilation (ACHVENT≤6) and more persons (n>3) but not in those with higher ventilation and less persons. ACHSS30 and ACHSS46 correlated well with ACHVENT (r=0.83, p=0.003), but ACHSS30 was more accurate for rooms with low ACHVENT. Ventilation rates could be reliably estimated using CO2 released from dry ice or baking soda. ACHVENT was highly correlated with ACHDI (r=0.99), ACHBV(r=0.98), ACHDI63%(r=0.98), and ACHBV63% (r=0.98). There were no statistically significant differences between ACHVENT and ACHDI63% or ACHBV63%.ConclusionsDental operatories with low ventilation rates and overcrowding facilitate CO2 accumulations. Ventilation rates could be reliably calculated by observing the changes in CO2 levels after a simple mixing of household baking soda and vinegar in dental settings. Time needed to remove 63% of excess CO2 generated by baking soda could be used to accurately assess the ventilation rates using a consumer-grade CO2 sensor and a basic calculator.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. S. Batterman , Review and Extension of CO2-Based Methods to Determine Ventilation Rates with Application to School Classrooms, Int J Environ Res Public Health 14(2) (2017).

2. J.-L. Jimenez , How to quantify the ventilation rate of an indoor space using an affordable CO2 monitor, Medium, 2020. Available at: https://medium.com/@jjose_19945/how-to-quantify-the-ventilation-rate-of-an-indoor-space-using-a-cheap-co2-monitor-4d8b6d4dab44

3. A. Fernstrom , M. Goldblatt , Aerobiology and its role in the transmission of infectious diseases, J Pathog 2013 (2013) 493960–493960.

4. Airborne Infection: Theoretical Limits of Protection Achievable by Building Ventilation

5. CDC, How COVID-19 spreads, 2020. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. (Accessed Feb. 4 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3