Cardiac fibroblast GSK-3α mediates adverse myocardial fibrosis via IL-11 and ERK pathway

Author:

Umbarkar Prachi,Tousif Sultan,Singh Anand P.,Anderson Joshua C.,Zhang Qinkun,Lal Hind

Abstract

AbstractBackgroundHeart failure is the leading cause of mortality, morbidity, and healthcare expenditures worldwide. Numerous studies have implicated Glycogen Synthase Kinase-3 (GSK-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms appear to play overlapping, unique, and even opposing functions in the heart. Recently our group has identified cardiac fibroblast (CF) GSK-3β as a negative regulator of fibrotic remodeling in the ischemic heart. However, the role of CF-GSK-3α in myocardial fibrosis is unknown.Methods and ResultsHerein, we employed two entirely novel conditional fibroblast-specific and tamoxifen-inducible mouse models to define the role of CF-GSK-3α in fibroblast activation and myocardial fibrosis. Specifically, GSK-3α was deleted from cardiac fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or periostin-promoter-driven Cre recombinase. At 2 months of age, WT and KO mice were subjected to cardiac injury, and heart functions were monitored by serial echocardiography. Histological analysis and morphometric studies were performed at 8 weeks post-injury. In both settings, GSK-3α deletion restricted fibrotic remodeling and improved cardiac function. To investigate underlying mechanisms, we examined the effect of GSK-3α deletion on myofibroblast transformation and pro-fibrotic TGFβ1-SMAD3 signaling in vitro. A significant reduction in cell migration, collagen gel contraction, and α-SMA expression in TGFβ1 treated GSK-3α KO MEFs confirmed that GSK-3α is required for myofibroblast transformation. Surprisingly, GSK-3α deletion did not affect SMAD3 activation, indicating the pro-fibrotic role of GSK-3α is SMAD3 independent. To further delineate the underlying mechanism, total proteins were isolated from CFs of WT and KO animals at 4 weeks post-injury, and kinome profiling was performed by utilizing PamStation®12 high throughput microarray platform. The kinome analysis identified the downregulation of RAF family kinase activity in GSK3α-KO-CFs. Moreover, mapping of significantly altered kinases against literature annotated interactions generated ERK-centric networks. Importantly, flow cytometric analysis of CFs confirmed a significant decrease in pERK levels in KO mice. Additionally, our in vitro studies demonstrated that GSK-3α deletion prevented TGFβ1 induced ERK activation thereby validating our findings from kinome analysis. Interestingly, IL-11, a fibroblast specific downstream effector of TGFβ1, was very low in GSK-3α KO MEFs as compared to WT and ERK inhibition further reduced IL-11 expression in them. All these results indicate that GSK-3α mediates pro-fibrotic response in the injured heart through IL-11 and ERK pathway.ConclusionCF-GSK-3α plays a causal role in myocardial fibrosis that could be therapeutically targeted for future clinical applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3