A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination

Author:

Staneva Desislava P.,Carloni Roberta,Auchynnikava Tatsiana,Tong Pin,Rappsilber JuriORCID,Jeyaprakash A. ArockiaORCID,Matthews Keith R.ORCID,Allshire Robin C.ORCID

Abstract

AbstractNucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by ‘writer’ and ‘eraser’ enzymes, respectively. Nucleosomal PTMs are recognised by a variety of ‘reader’ proteins which alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 68 predicted readers, writers and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 63 of them in the parasite’s bloodstream form. ChIP-seq demonstrated that fifteen candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins exhibit a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identified distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET-domain and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcriptional start regions. The systematic approach employed provides detail of the composition and organization of the chromatin regulatory machinery in Trypanosoma brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3