Abstract
AbstractDopamine (DA) system is intriguing in the aspect that distinct, typically opposing physiological functions are mediated by D1 dopamine receptors (Drd1) and D2 dopamine receptors (Drd2). Both Drd1+ and Drd2+ neurons were identified in superior colliculus (SC), a visuomotor integration center known for its role in defensive behaviors to visual threats. We hypothesized that Drd1+ and Drd2+ neurons in the SC may play a role in promoting instinctive defensive responses.Optogenetic activation of Drd2+ neurons, but not Drd1+ neurons, in the SC triggered strong defensive behaviors. Chemogenetic inhibition of SC Drd2+ neurons decreased looming-induced defensive behavior, suggesting involvement of SC Drd2+ neurons in defensive responses. To further confirm this functional role of Drd2 receptors, pretreatment with the Drd2+ agonist quinpirole in the SC impaired looming-evoked defensive responses, suggesting an essential role of Drd2 receptors in the regulation of innate defensive behavior. Inputs and outputs of SC Drd2+ neurons were investigated using viral tracing: SC Drd2+ neurons mainly receive moderate inputs from the Locus Coeruleus (LC), whilst we did not find any incoming projections from other dopaminergic structures. Our results suggest a sophisticated regulatory role of DA and its receptor system in innate defensive behavior.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献