The yeast eIF2 kinase Gcn2 facilitates H2O2-mediated feedback inhibition of both protein synthesis and ER oxidative folding during recombinant protein production

Author:

Gast Veronica,Campbell Kate,Campos Cecilia Picazo,Engqvist Martin,Siewers Verena,Molin MikaelORCID

Abstract

AbstractRecombinant protein production is a known source of oxidative stress. Knowledge of which ROS are involved or the specific growth phase in which stress occurs however remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, micro-cultivation and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find Gcn2-dependent phosphorylation of eIF2α to increase alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains, but not in the wild-type. Gcn2-deficiency furthermore reduced intracellular H2O2 levels and the unfolded protein response whilst expression of antioxidants and the ER disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding to be coupled and subject to feedback inhibition by H2O2.ImportanceReactive oxygen species (ROS) accumulate during recombinant protein production both in yeast and Chinese hamster ovary cells, two of the most popular organisms used in the multi-million dollar protein production industry. Here we document increased H2O2 in the cytosol of yeast cells producing α-amylase. Since H2O2 predominantly targets the protein synthesis machinery and activates the translation initiation factor kinase Gcn2, we removed Gcn2, resulting in increased recombinant α-amylase production in two different previously engineered high-producing protein production strains. Removal of this negative feed-back loop thus represents a complementary strategy for improving recombinant protein production efforts currently used in yeast. Gcn2-deficiency also increased the expression of antioxidant genes and the ER-foldase PDI1, suggesting that protein synthesis and ER oxidative folding are linked and feed-back regulated via H2O2. Identification of additional components in this complex regulation may further improve protein production and contribute to the development of novel protein-based therapeutic strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3