FRONTLINE COMMUNITIES AND SARS-COV-2 - MULTI-POPULATION MODELING WITH AN ASSESSMENT OF DISPARITY BY RACE/ETHNICITY USING ENSEMBLE DATA ASSIMILATION

Author:

Fleurantin Emmanuel,Sampson ChristianORCID,Maes Daniel Paul,Bennet Justin,Fernandez-Nunez Tayler,Marx Sophia,Evensen Geir

Abstract

AbstractThe COVID-19 pandemic has imposed many strenuous effects on the global economy, community, and medical infrastructure. Since the out- break, researchers and policymakers have scrambled to develop ways to identify how COVID-19 will affect specific sub-populations so that good public health decisions can be made. To this end, we adapt the work of Evensenet al[1] which introduces a SEIR model that incorporates an age-stratified contact matrix, a time dependent effective reproduction numberR, and uses ensemble data assimilation to estimate model parameters. The adaptation is an extension of Evensen’s modeling framework, in which we model sub-populations with varying risks of contracting SARS-CoV-2 (the virus that causes COVID-19) in a particular state, each with a characteristic age-stratified contact matrix. In this work, we will focus on 9 U.S. states as well as the District of Columbia. We estimate the effective reproductive number as a function of time for our different sub-populations and then divide them into two groups: frontline communities (FLCs) and the complement (NFLCs). Our model will account for mixing both within populations (intra-population mixing) and between populations (inter-population mixing). Our data is conditioned on the daily numbers of accumulated deaths for each sub-population. We aim to test and demonstrate methodologies that can be used to assess critical metrics of the pandemic’s evolution which are difficult to directly measure. The output may ultimately be of use to measure the success or failures of the pandemic response and provide experts and policymakers a tool to create better plans for a future outbreak or pandemic. We consider the results of this work to be a reanalysis of pandemic evolution across differently affected sub-populations which may also be used to improve modeling and forecasts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3