Tissue Stress from Laparoscopic Grasper Use and Bowel Injury in Humans: Establishing Intraoperative Force Boundaries

Author:

Khan Amanda FarahORCID,MacDonald Matthew Kenneth,Streutker Catherine,Rowsell Corwyn,Drake James,Grantcharov Teodor

Abstract

AbstractBackgroundInappropriate force in laparoscopic surgery can lead to inadvertent tissue injury. It is currently unknown however at what magnitude of compressive stress trauma occurs in gastrointestinal tissues.MethodsThis study included 10 small bowel and 10 colon samples. Each was compressed with pressures ranging from 100 kPa to 600 kPa by a novel device to induce compressive “grasps” to simulate those of a laparoscopic grasper. Experimentation was performed ex-vivo, in-vitro. Grasp conditions of 0 to 600 kPa for a duration of 10 seconds were utilized. Two pathologists who were blinded to all study conditions, performed a histological analysis of the tissues. Patients were eligible if their surgery procured healthy tissue margins for experimentation (a convenience sample). 26 patient samples were procured; six samples were unusable. 10 colon and 10 small bowel samples were tested for a total of 120 experimental cases. No patients withdrew their consent. Two metrics of damage were quantified: an intestinal layer thickness calculation where the serosa layer was measured in the area of compression and compared to a local control and a histological scoring scale for tissue trauma.ResultsSmall bowel (10), M:F was 7:3, average age was 54.3 years. Colon (10), M:F was 1:1, average age was 65.2 years. All 20 patients experienced a significant difference (p<0.05) in serosal thickness post-compression at both 500 and 600 kPa for both tissue types. A logistic regression analysis with a sensitivity of 100% and a specificity of 84.6% on a test set of data predicts a safety threshold of 329-330 kPa.ConclusionA threshold was discovered that corresponded to both significant serosal thickness change and a positive histological trauma score rating. This “force limit” could be used in novel sensorized laparoscopic tools to avoid intraoperative tissue injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3