F-type Pyocins are Diverse Non-Contractile Phage Tail-Like Weapons for Killing Pseudomonas aeruginosa

Author:

Saha Senjuti,Ojobor Chidozie D.,Mackinnon Erik,North Olesia I.ORCID,Bondy-Denomy JosephORCID,Lam Joseph SORCID,Ensminger Alexander W.ORCID,Maxwell Karen L.,Davidson Alan R.ORCID

Abstract

ABSTRACTMost Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or non-contractile phage tails known as R-type and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3’-end of the F-type pyocin cluster are divergent in sequence, and likely determine bactericidal specificity. We use sequence similarities among these proteins to define 11 distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly re-assorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins emerged earlier or have been subject to distinct evolutionary pressures. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as anti-bacterial therapeutics.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes a broad spectrum of antibiotic resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great interest in the development of alternative therapeutics. One alternative is protein-based antimicrobials called bacteriocins, which are produced by one strain of bacteria to kill other strains. In this study, we investigate F-type pyocins, bacteriocins naturally produced by P. aeruginosa that resemble non-contractile phage tails. We show that they are potent killers of P. aeruginosa, and distinct pyocin groups display different killing specificities. We have identified the probable specificity determinants of F-type pyocins, which opens up the potential to engineer them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well characterized phage tails will greatly facilitate their development into effective antibacterials.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3