Abstract
AbstractMicrobial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of all non-ribosomal peptides (NRP) produced by B. subtilis clade, we revealed that they acted either synergistically or additively to effectively eliminate phylogenetically distinct competitors. All four major NRP biosynthetic clusters were also imperative for the survival of B. subtilis in a complex community extracted from the rhizosphere. The production of NRP came with a fitness cost manifested in growth inhibition, rendering NRP synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, NRP production was only induced by the presence of peptidoglycan cue from a sensitive competitor. These results experimentally demonstrate a general ecological concept – closely related communities (“self”) are favoured during competition, due to compatibility in attack and defence mechanisms.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献