Abstract
AbstractExtracellular vesicles play major roles in intercellular signaling, yet fundamental aspects of their biology remain poorly understood. Ciliary EV shedding is evolutionary conserved. Here we use super resolution, real time imaging of fluorescent-protein tagged EV cargo combined with in vivo bioassays to study signaling EVs in C. elegans. We find that neuronal sensory cilia shed the TRP polycystin-2 channel PKD-2::GFP-carrying EVs from two distinct sites - the ciliary tip and the ciliary base. Ciliary tip shedding requires distal ciliary enrichment of PKD-2 by the myristoylated coiled-coil protein CIL-7. Kinesin-3 KLP-6 and intraflagellar transport (IFT) kinesin-2 motors are also required for ciliary tip EV shedding. Blocking ciliary tip shedding results in excessive EV shedding from the base. Finally, we demonstrate that C. elegans male ciliated neurons modulate EV cargo composition in response to sensory stimulation by hermaphrodite mating partners. Overall, our study indicates that the cilium and its trafficking machinery act as a specialized venue for regulated EV biogenesis and signaling.
Publisher
Cold Spring Harbor Laboratory
Reference36 articles.
1. Extracellular Vesicles: Unique Intercellular Delivery Vehicles
2. Ectosomes and Exosomes-Two Extracellular Vesicles That Differ Only in Some Details;Biochem. Mol. Biol. J.,2016
3. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, (2018).
4. Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis
5. Extracellular vesicles in renal disease;Nature Reviews Nephrology,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献