Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells

Author:

Borriello Lucia,Coste Anouchka,Sharma Ved P.,Karagiannis George S.,Lin Yu,Wang Yarong,Ye Xianjun,Duran Camille L.,Chen Xiaoming,Dalla Erica,Singh Deepak K.,Oktay Maja H.,Aguirre-Ghiso Julio A.,Condeelis John,Entenberg David

Abstract

ABSTRACTMetastases are initiated by disseminated tumor cells (DTCs) that depart from the primary tumor and colonize target organs. Growing evidence suggests that the microenvironment of the primary tumor lesion primes DTCs to display dormant or proliferative fates in target organs. However, the manner in which events taking place in the primary tumor influence DTC fate, sometimes long after dissemination, remains poorly understood. With the advent of a novel intravital imaging technique called the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we have, for the first time, been able to study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find, across several models, a high rate of success for tumor cells to complete the initial steps of the metastatic cascade in the secondary site, including retention of DTCs in the lung vasculature, speed of extravasation, and survival after extravasation. Importantly, initiation of metastatic growth was controlled primarily by a rate-limiting step that occurred post-extravasation and at the stage of the conversion of single DTCs from a dormant to a proliferative state. Detailed analysis of these events revealed that, even before dissemination, a subset of macrophages within the primary tumor induces, in tumor cells that are about to disseminate, the expression of proteins that regulate a pro- dissemination (MenaINV) and pro-dormancy (NR2F1) phenotype. Surprisingly, if cancer cells are intravenously injected, the rate limiting stages of MenaINV-associated extravasation, dormancy, and other parameters, are lost or altered in a way that impacts how DTCs progress through the metastatic cascade. Our work provides novel insight into how specific primary tumor microenvironments prime a subpopulation of cells for dissemination and dormancy. We also propose that dissecting mechanisms of metastasis, or testing anti-metastatic therapies, may yield results of limited application if derived from models that do not follow spontaneous dissemination.SIGNIFICANCEThis study provides important insight into the contribution of primary tumor microenvironmental niches to cancer metastasis by identifying the manner in which these niches spawn subpopulations of DTCs that are primed for dissemination and dormancy in the secondary site. This study may provide novel targets that could be inhibited to prevent successful colonization of the secondary site and, hence, metastasis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3