Norepinephrine and glucocorticoids modulate chronic unpredictable stress-induced increase in the type 2 CRF and glucocorticoid receptors in brain structures related to the HPA axis activation

Author:

Malta Marilia B,Martins Joelcimar,Novaes Leonardo SORCID,dos Santos Nilton BORCID,Sita LucianeORCID,Camarini RosanaORCID,Scavone CristoforoORCID,Bittencourt JacksonORCID,Munhoz Carolina D.ORCID

Abstract

AbstractThe stress response is multifactorial and enrolls circuitries to build a coordinated reaction, leading to behavioral, endocrine, and autonomic changes. These changes are mainly related to the hypothalamus-pituitary-adrenal (HPA) axis activation and the organism’s integrity. However, when self-regulation is ineffective, stress becomes harmful and predisposes the organism to pathologies. The chronic unpredictable stress (CUS) is a widely used experimental model since it induces physiological and behavioral changes and better mimics the stressors variability encountered in daily life. Corticotropin-releasing factor (CRF) and glucocorticoid (GCs) are deeply implicated in the CUS-induced physiological and behavioral changes. Nonetheless, the CUS modulation of CRF receptors and GR and the norepinephrine role in extra-hypothalamic brain areas were not well explored. Here, we show that 14-days of CUS induced a long-lasting HPA axis hyperactivity evidenced by plasmatic corticosterone increase and adrenal gland hypertrophy, which was dependent on both GCs and NE release induced by each stress session. CUS also increased CRF2 mRNA expression and GR protein levels in fundamental brain structures related to HPA regulation and behavior, such as the lateral septal nucleus intermedia part (LSI), ventromedial hypothalamic nucleus (VMH), and central nucleus of the amygdala (CeA). We also showed that NE participates in the CUS-induced increase in CRF2 and GR levels in the LSI, reinforcing the locus coeruleus (LC) involvement in the HPA axis modulation. Despite the CUS-induced molecular changes in essential areas related to anxiety-like behavior, this phenotype was not observed in CUS animals 24 h after the last stress session.HighlightsCUS persistently increased plasma CORT levels via GCs and NE signaling.CUS persistently increased CRF2 mRNA in extra-hypothalamic brain areas.CUS increased GR protein levels in brain regions related to GCs release control.NE and GCs participate in the CUS-induced increase in CRF2 and GR levels.LSI could be the brain nucleus that dictates the fine-tuned response of CUS.CUS animals did not present anxiety-like behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3