Abstract
ABSTRACTThe isocortex of all mammals studied to date shows a progressive increase in the amount and continuity of background activity during early development. In humans the transition from a discontinuous (mostly silent, intermittently bursting) cortex to one that is continuously active is complete soon after birth and is a critical prognostic indicator in newborns. In the visual cortex of rodents this switch from discontinuous to continuous background activity occurs rapidly during the two days before eye-opening, driven by activity changes in relay thalamus. The factors that regulate the timing of continuity development, which enables mature visual processing, are unknown. Here we test the role of the retina, the primary input, in the development of continuous spontaneous activity in the visual system of mice using depth electrode recordings of cortical activity from enucleated mice in vivo. Bilateral enucleation at postnatal day (P)6, one week prior to the onset of continuous activity, acutely silences cortex, yet firing rates and early oscillations return to normal within two days and show a normal developmental trajectory through P12. Enucleated animals showed differences in silent period duration and continuity on P13 that resolved on P16, and an increase in low frequency power that did not. Our results show that the timing of cortical activity development is not determined by the major driving input to the system. Rather, homeostatic mechanisms in thalamocortex regulate firing rates and continuity even across periods of rapid maturation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献