Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern

Author:

Belteton Samuel A.ORCID,Li WenlongORCID,Yanagisawa MakotoORCID,Hatam Faezeh A.ORCID,Quinn Madeline I.ORCID,Szymanski Margarete K.ORCID,Marley Mathew W.ORCID,Turner Joseph A.ORCID,Szymanski Daniel B.

Abstract

Abstract The leaf epidermis is a dynamic biomechanical shell that integrates growth across spatial scales to influence organ morphology. Pavement cells, the fundamental unit of this tissue, morph irreversibly into highly lobed cells that drive planar leaf expansion. Here we define how tissue-scale cell wall tensile forces and the microtubule-cellulose synthase systems pattern interdigitated growth in real-time. A morphologically potent subset of cortical microtubules span the periclinal and anticlinal cell faces to pattern cellulose fibers that generate a patch of anisotropic wall. The result is local polarized growth that is mechanically coupled to the adjacent cell via a pectin-rich middle lamella, and this drives lobe formation. Finite element pavement cell models revealed cell wall tensile stress as an upstream patterning element that links cell- and tissue-scale biomechanical parameters to interdigitated growth. Cell lobing in leaves is evolutionarily conserved, occurs in multiple cell types, and is associated with important agronomic traits. Our general mechanistic models of lobe formation provide a foundation to analyze the cellular basis of leaf morphology and function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3