Abstract
AbstractG protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and represent major drug targets. Upon ligand stimulation, GPCRs activate G proteins and undergo a complex regulation by interaction with GPCR kinases (GRKs) and formation of receptor–arrestin complexes. For many GPCRs, this mechanism triggers receptor desensitisation, internalisation, and possibly a second intracellular signalling wave. Here we created eleven different HEK293 knockout cell clones for GRK2, 3, 5, and 6 individually and in combination. These include four single, two double, four triple, and the quadruple GRK knockout. The statistical evaluation of β-arrestin1/2 interactions for twelve different receptors grouped the tested GPCRs into two main subsets: those for which β-arrestin interaction was mediated by either GRK2, 3, 5, or 6 and those that are mediated by GRK2 or 3 only. Interestingly, the overexpression of specific GRKs was found to induce a robust, ligand-independent β-arrestin interaction with the V2R and AT1R. Finally, using GRK knockout cells, PKC inhibitors, and β-arrestin mutants, we present evidence for differential AT1R–β-arrestin2 complex configurations mediated by selective engagement of PKC, GRK2, or GRK6. We anticipate our novel GRK-knockout platform to facilitate the elucidation of previously unappreciated details of GRK-specific GPCR regulation and β-arrestin complex formation.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献