Representation learning applications in biological sequence analysis

Author:

Iuchi HitoshiORCID,Matsutani TaroORCID,Yamada KeisukeORCID,Iwano NatsukiORCID,Sumi ShunsukeORCID,Hosoda ShionORCID,Zhao Shitao,Fukunaga TsukasaORCID,Hamada MichiakiORCID

Abstract

ABSTRACTRemarkable advances in high-throughput sequencing have resulted in rapid data accumulation, and analyzing biological (DNA/RNA/protein) sequences to discover new insights in biology has become more critical and challenging. To tackle this issue, the application of natural language processing (NLP) to biological sequence analysis has received increased attention, because biological sequences are regarded as sentences and k-mers in these sequences as words. Embedding is an essential step in NLP, which converts words into vectors. This transformation is called representation learning and can be applied to biological sequences. Vectorized biological sequences can be used for function and structure estimation, or as inputs for other probabilistic models. Given the importance and growing trend in the application of representation learning in biology, here, we review the existing knowledge in representation learning for biological sequence analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3